Image Formation

CS418 Computer Graphics John C. Hart

Solar Radiation

Rayleigh Scattering

Chlorophyll

The Human Eye

We perceive the world around us largely through images

Focus

Simple lens

- Focal length: f
- Power: 1/*f* diopters
- When $d = \infty$ f = r = 17mm 1m/f = 59 diopters

Compound lens

- cornea: 40 diopters
- lens: 12 diopters (kids)
- lose ~ 0.2 diopters/year
- lens rigid by age 60

Chromatic Aberration

- Refractive index of lens material varies by wavelength
- Resulting dispersion causes focal plane to vary by color
- Need 1.5 diopters to focus red and blue to the same depth
- Never use pure blue (add a bit of red or green to aid in focusing on edges)
- Warm colors close, cool colors far

Most people see the red, Closer than the blue. Others see the opposite. How about you?

The Human Eye

What we perceive is a heavily processed version of what we physically sense

Perceptual nerves process edges and motion before the signal even gets to the brain

The Human Eye

Cornea, lens focus light onto Retina

Photoreceptors

- *rods* brightness
- *cones* color (red, green, blue)

Ganglions – nerve cells

- (*X*-*cells*) detect pattern
- (*Y-cells*) detect movement

Lateral Inhibition

- Rods accentuates and exaggerates differences in space and time
- Eye's internal real-time edge and motion detector
- Used to detect predators like tigers in the bushes
- Middle squares same shade of gray

Rods & Cones

- Rods measure intensity
 - 80 million
 - Denser away from fovea
 - Astronomers learn to glance off to the side of what they are studying
 - sensitive, shut down in daylight
- R,G and B cones
 - 5 million total
 - -100K 325K cones/mm² in fovea
 - 150 hues
- Combined
 - 7 million shades

Deering's Photon Accurate Model of the Human Retina from SIGGRAPH 2005

Cone Response

Color Perception

- L = 31% R + 59% G + 10% B
- 10% of males are color blind
- Pay attention to contrast!
- Eye color space
 L, R + G B, R G
- Color space is black⇔white, yellow⇔blue, red⇔green

Color in Context

Color in Context

The Camera

The Image Plane

Polygonal Models

Pixel Discretization

Raster Rendering

For each polygon: Compute illumination Project to image plane Fill in pixels

Raster Images

- (Spatial) Resolution
 - horizontal pixels x vertical pixels
- Image Aspect Ratio
 - width/height
 - HDTV = 1920/1080 = 1.78 = 16:9
- Pixel Aspect Ratio
 - (H/V) / (height/width) = (H/V) x (1/A)
 - Square pixels are 1:1
- Color resolution
 - Bits per pixel
 - -24 bpp = 8 bits red, green and blue
 - 8 bpp = 3 bits red, green, 2 bits blue

Vector v. Raster Graphics

Vector Graphics

- Plotters, laser displays
- "Clip art," illustrations
- PostScript, PDF, SVG
- Low memory (display list)
- Easy to draw line
- Solid/gradient/texture fills

Raster Graphics

- TV's, monitors, phones
- Photographs
- GIF, JPG, etc.
- High memory (frame buffer)
- Hard to draw line
- Arbitrary fills

Getting a Line from 3-D to Screen

